
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

204

A Deterministic Approach for
Diagnosis Test Generation

Pavlinka Goranova Radoyska

Abstract: The main purpose of the diagnosis test pattern
generation is to give the enough information for fault
diagnosis during the manufacturing time. The most of the test
generation methods are simulation based and have
probabilistic nature. In this paper I propose the deterministic
approach, which guarantees fault distinguishability.
Algorithm is single stuck-at fault based. I perform some
optimization on algorithms procedures, so that this algorithm
obtains polynomial complexity and return the minimal test set.

Keywords: algorithm, digital circuits, test pattern generation,
fault diagnosis, z-set.

I. INTRODUCTION
 Fault diagnosis is used to localize device failures.

Followed by failure isolation and analysis, fault diagnosis
can provide information about the defect location and
defect mechanism present in the circuit and be used to
improve the manufacturing yield. The result of fault
diagnosis is a small set of faults which can explain an
erroneous response. The main approaches for fault
diagnosis are two: cause-effect and effect-cause. The cause-
effect methods are dictionary based. Algorithms from this
group build the simulation-response databases for the
modeled faults and compared these databases with the
observed failure responses to determine probable cause of
the failures. This class of algorithms uses fault simulations
on the design time and fills a data base with failing
information. They are time consuming while produce the
decisions on the manufacturing stage. The both
combinational and sequential circuits are handled in the
same way. The main disadvantage of this approach is the
size of the fault dictionaries – the huge data volume is
generated by the fault simulator. There are many decisions
for compact dictionary building [1], [2]. The other
disadvantage is necessity of accurate description of the fault
models, used during fault simulation. Recently are
developed some algorithms that not required a detailed fault
model description [3], [4], [5].

Effect-cause methods are simulation based [6], [7], [8].
They use actual responses analyzing to determine which
faults might have caused the observed failure effect. This
class of algorithms uses backtracking from each primary
output to determine the error propagation paths for all
possible fault candidates. Fault simulations are made for
every failing test pattern and any candidate. The aim is to
find these candidates, which better explain the failing
results. The main advantage of this method is that it does
not need to explicitly consider each fault model during the
identification of critical lines. This method is memory

 P.Radoyska is with the College of Energetic and Electronics at
Technical University - Sofia, 31 Bulgaria blvd., 2140 Botevgrad,
Bulgaria, e-mail: pradoiska@abv.bg, GSM:+359 895 589 981

consuming, but is time greedy. There are developed many
algorithms for reducing the diagnosis time, such as
Incremental fault diagnosis [9], Z-diagnosis [10], [11], A-
diagnosis [12].

Well build test pattern in diagnosis aspect are important
for the both of the method types. In the many of the
mentioned before papers [2], [8], [9], especially for effect-
cause methods, the problem of test pattern generation
doesn't treed. In others [4], [10], [13] a standard ATPG
tools whit some constrains and added possibilities are used.
Some of them [14] use ATPG tools and n-detection
principles and hope that if the fault is detected n times, the
diagnosis possibilities become high. In this work I propose
deterministic approach for test pattern generation with fault
diagnosis purpose. My aim is to select optimal set of test
patterns that guarantee the faults distinguishability. To
achieve this I follow three steps: (1) build the collection of
all test patterns for every group of equivalent faults; (2)
minimize the number of test patterns by merging the
compatible test patterns; (3) minimize the number of test
patterns by extracting the redundant test patterns. The rest
of the paper is organized as follows. In Section 2, are given
some definitions, requisite for further explanations. In
Section 3, the algorithm, subalgorithms and some
optimizations are presented. In Section 4, is made
conclusion and presented future plans.

II. SOME DEFINITIONS
Collapsed dictionary (F) is a fault dictionary without any
equivalent faults (0FF ⊂). Every collection of equivalent
faults is presented by one of them.
Fail output (FO) is the output of the CUD (Circuit Under
Detection), which value is different from the expected.
Fail pattern (Fail test) is a test pattern for which the values
at one ore more outputs of the CUD are different from those
of the expected fault-free circuit.
Indistinguishable faults. Two faults fi and fj of a given
circuit are indistinguishable if for any input sequence they
have the same collection of fail outputs. Otherwise, they are
distinguishable.
Compatible test patterns. The test patterns ti and tj are
compatible if for any corresponding bit in ti and tj, one of
the next statements is true: ti[b]=tj[b] or ti[b]=‘x’ or tj[b]
= ‘x’, where b is a bit index.
Z-set is a collection of primary outputs where one fault
could be detected. Z(f) for the fault f on the line l is the set
of outputs such that there is a directed path from line l to
each of them. Z-set is a collection of sensitive outputs. The
z-sets are independent of the test set used and the type of
the fault. Therefore we can write Z(f)=Z(l).

For illustration, we consider the circuit of figure 1. The
Z-sets for faults f1, f2 and f3, shown on figure 1 are Z(f1) =
{z1}; Z(f2) = {z2}; Z(f3) = {z1,z2}. Z-set is a parameter, which

ANNUAL JOURNAL OF ELECTRONICS, 2009

205

can be used to distinguish faults. Consider the example on
figure 1 the two faults f1 and f2 are distinguishable
since ∅=)()(31 fZfZ I .

Figure 1. Using z-sets to distinguish faults

Z-set for a line l can described as a vector Zl ={Zl(0) Zl(1)
Zl(2)… Zl(n-1)}, where n is a number of outputs, Zl(j)=1 if
zl∈Zl and Zl(j)=0 if zl∉Zl. Consider the example Z(f1)={10},
Z(f2)={11} and Z(f3)={01}.
Z-set cardinality is the number of sensitive outputs,
respectively the number of the digits 1 in Zset. The
cardinality of Z(fi) can be marked as Czi=|Z(fi)|. For
example considering the figure 1 Cz1=1, Cz2=2 and Cz3=1.

III. SUBALGORITHMS AND OPTIMIZATIONS
Let go back to the classical D-algorithm [15] for single

stuck-at fault test pattern generation. According to this
algorithm we can build a decision graph and find the entire
test patterns },...,,{ 21 na tttT = , which can detect single stuck-
at fault Ffa ∈ . More over we can find fail outputs

jFO for
every test pattern

aj Tt ∈ . Then for all faults in the collapsed
dictionary and all test patterns we can build the set D of
triples >=< iiii FOtfd ,, . For every fault af we can extract
the subset of D (Da), such that

},,,:{ aiiiiiia ffFOtfdDdD =>=<∈∀= . Let label aP the
set of all unique pair >=< iii FOtp , in Da. Every pair

miPp ai ,...,1, =∈ can detects the set of faults FFi ⊆ . Let
aF is the collection of all sets iF (},...,{ 1 m

a FFF =). The

fault af is distinguishable if the intersection of all fault sets
in the aF is the one element set and this element is af

(}{
1

a

m

i
i fF =

=
I). If in the aF there is no fault set xF for

which }{}{}{
1

1 1
a

x

i

m

xi
ii fFF =

−

= +=
I I I , the aP contains the minimal

set of tests that makes the fault af diagnosable.
My purpose is to present the effective deterministic

algorithm for finding the minimal set of tests, which make
all faults from collapsed dictionary F distinguishable. The
proposed algorithm has three main steps:

(1) to build the collection D for every fault Ffa ∈ and
every possible test pattern Tt j ∈ in 3-valent logic (0, 1 and
X), where level ‘x’ means “doesn’t matter”;

(2) to minimize the number of test patterns Tt j ∈ by

merging the compatible patterns for triples id with equal
FOi;

(3) to minimize the number of test patterns Tt j ∈ by
selecting the minimal test set for every fault.

3.1. D-collection building

Path tracing optimization.
D-algorithm decision graph is a hug and there are many

duplicated vertexes and what is more- there are many
duplicated graph branches. According to this algorithm
every fault has own decision graph. Therefore the
redundant calculations become extremely high. To reduce
this number it is useful first to calculate the set of input
patterns, which can force every line respectively to the level
0 and level 1 and then, to active every fault from the
collapsed dictionary and to propagate the fault effect to
every observation output. The calculations are made in 3-
valent logic - every line take one of three levels:’0’, ‘1’ or
‘x’ (doesn't matter). The two stages use the forward path
tracing. Using this approach the redundant calculations are
prevented and the decision graph gets a linear instead of a
tree structure. The complexity of calculations from
exponential becomes polynomial.
Subalgorithm 1. Algorithm for building the collection of
input patterns v

lL , which can force the line l to level v. The
calculations are performed for each gate output only if the
collections for all inputs are calculated. According to the
logic of the gate and the desired output line level, input
lines collections 'v

iL , are juxtaposes and the result is the
v
oL set. The juxtaposing arithmetic has the next rules:

• if it is enough to put only one of the input lines in a
level 'v , then the result collection is a union of all input
collections U

n

i

v
i

v
o LL

1

'

=

= , where n is the number of gate inputs;

• if it is mandatory to put all input lines in a level 'v ,
then the result collection is a Cartesian product from all
input collections ∏

=

=
n

i

v
i

v
o LL

1

' . During this production every

two patterns are joined bit by bit according the next rules:
0 & х = 0
х & 0 = 0

1 & х = 1
х & 1 = 1

1 & 0 = ? (conflict)
0 & 1 = ? (conflict)

If in any bit in the result pattern there is a conflict, this
pattern is rejected.

Figure 2. c17 benchmark circuit.

For example let see the circuit, shown on figure 2. To
force line 1 to level 0, it is enough to set PI1=0, therefore

(0xxxx)0
1 =L . To force line 6 to level 1, at least one of lines

1 and 3.1 must be forced to level 0, therefore
=== {(xx0xx)}{(0xxxx)},, 0

1.3
0
1

1
6 LLL (xx0xx)}{(0xxxx), .

Now let pay attention on calculations for forcing line 10 to
level 0.

f3

f1

f2

&

&

&

≥1

≥1

z1

z2

Z(f1) = {z1}

Z(f2) = {z1, z2}

Z(f3) = {z3}

7.2 7

7.1

6

8

9

8.1

8.2

10

11

3.1

3.2

4

2

3

5

1

&

G3

&

G5

&

G6

PI1

PI2

PO1

PO2 &

G4

&

G2

&

G1

PI3

PI4

PI5

ANNUAL JOURNAL OF ELECTRONICS, 2009

206

=×= 1
1.8

1
6

0
10 LLL =}×} (xx11x) {(x0xxx),(xx0xx) {(0xxxx),

 (xx11x)),&((0xxxx)(x0xxx)),&{((0xxxx)=
=((xx11x))}&((xx0xx))(x0xxx)), (&((xx0xx))

== (xx?1x)}(x00xx),(0x11x),{(00xxx),
 (x00xx)}(0x11x),{(00xxx),=

In the Cartesian product there are four elements. In the
fourth element there is a conflict and it is rejected. The only
three patterns remain in the result collection.

Subalgorithm 2. Algorithm for building the collection of
test patterns v

lT , which can detect the fault lf . This
algorithm traces the fault propagation to all observation
point and follows two steps: fault activation and fault
propagation to every gate output on the path.

(1) Fault activation. Lets have a fault lf , which is a
single stuck-at fault to level v on line l (savli /). To activate

the fault we must force the level v on the line l , hence we
must extract the collection v

lL .
(2) Fault propagation to every gate output on the path.

To permit fault effect propagation we must force the other
gate inputs in such level, so that the gate works as a
repeater for fault line. For the AND/NAND gates -

∏
−

=

=
1

1

1
n

i
irepeater LG , where n is the number of gate inputs. For

the OR/NOR gates - ∏
−

=

=
1

1

0
n

i
irepeater LG . For the XOR/NXOR

gates - 10
iirepeater LLG += . The fault propagation collection for

gate output can calculate by the equation

repeater
v
lk

v
l GLGT ×=)(, for the first gate and

repeaterk
v

lk
v

l GGTGT ×=+)()(1
 for the rest gates on fault

propagation path.
For example let’s return to the circuit, shown on figure 2

and calculate 0
9T (test patterns for fault sa0 on line 9).

=×=×= 1
2.8

1
9

1
96

0
9)(LLGLGT repeater

(xx11x)} {(x0xxx),(xxxx0)} {(xx11x), ×=

}{= (xx110)(x0xx0),(xx11x),(x011x),)(6
0

9 GT
The fault effect, detected from all the tour test patterns

can be observed on output PO2. The detecting set for this
fault is == 0/9if

D ,PO(xx11x),,,PO(x011x),,{ 22 ><>< ii ff

>}<>< 22 PO(xx110),,,PO(x0xx0),, ii ff .
Now let calculate the test pattern for the line 3.2 sa0 fault

- 0
2.3T . There are three fault propagation paths: G2-G3-G5,

which can be observed on output PO1; G2-G4-G6 and G2-
G3-G6, which can be observed on output PO2. For the first
path calculations are:

=×= 1
4

1
2.32

0
2.3)(LLGT (xx11x)}{ {(xxx1x)}(xx1xx)}{ =× (1)

 {(x1xxx)} (xx11x)}{)()(1
22

0
2.33

0
2.3 ×=×= LGTGT

{(x111x)})(3
0
2.3 =GT (2)

=×= 1
63

0
2.35

0
2.3)()(LGTGT = (xx0xx)} (0xxxx), {(x111x)}{ ×

{(0111x)}= x1?1x)}((0111x), {= (3)
For the second path we can use the result from equation

(1) and calculate
}{=×= (xx111))()(1

52
0
2.34

0
2.3 LGTGT (4)

}{=×= (xx111)(x0111),)()(1
2.84

0
2.36

0
2.3 LGTGT (5)
For the third path we can use the result from equation (2)

and calculate
}{=×= (x111x))()(1

63
0
2.36

0
2.3 LGTGT (6)
From the equations (3), (5) and (6) can make the

detecting set for this fault:
,FO(x0111),,,FO(0111x),,{ 210/2.3 ><><== jjf ffD

j

>}<>< 22 FO(x111x),,,FO(xx111),, jj ff

Test pattern collection optimization.

After the algorithm 1 or algorithm 2 calculations it is
possible to appear the fully or partially redundant elements
in the test pattern collections. Therefore it is useful to
optimize every collection after calculation. The
optimization can be made by absorption. To explain this
algorithm firstly must define the term covering test
pattern. If there are two test patterns ti and tj and if for any
bit in ti and tj the next statements is true: ti[b]=tj[b] or
ti[b]=‘x’; then the ti becomes the covering test pattern for tj
and can absorb it.

If there is a collection
 (0111x)}(0x11x),(0111x),(x111x),(xx111),{=T test

patterns (0111x)t3 = and (0111x)t5 = are identical and t3

can absorb t5 (or vice verse). Test pattern (0x11x)t 4 = can
absorb (0111x)t3 = . The reduced collection becomes

(0x11x)}(x111x),{(xx111),T = .

Fault dictionary optimization.

Consider the algorithm 2 you can mention that the
calculations for the faults of the lines that are close to the
outputs are less then these that are far from the output.
Therefore it is profitably to put in the collapsed dictionary
the closest to the outputs fault from every equivalent group.

3.2. Improving distinguishability

If there are two D elements da and db, so that ba ff ≠ ,

ba FOFO = and ta and tb are compatible, then the two faults
are potentially indistinguishable. For example, let have
ta=”01xx0” and tb=”x1x00”. After optimizations this
patterns may become ta=tb=”01000” and af and bf become
indistinguishable. To guarantee the distinguishability at
least one of the bits must become explicitly different. To
give a possibility for further optimization it is enough to
change just one bit. For the example ta=”01xx0” and
tb=”11x00”.

Subalgorithm 3. Improve distinguishability.
1. For every primary output FOx make D collections

for every fault pairs af and bf

},,,,:{ xiaiiiiiia FOFOffFOtfdDdD ==>=<∈∀= and

},,,,:{ xibiiiiiib FOFOffFOtfdDdD ==>=<∈∀= .
2. If in Da and Db there is at least one incompatible test

pattern, af and bf are distinguish. Take the other pair.
For the one of compatible pairs it ,

jt change one of ‘x’
levels to alternative value, so that it and

jt becomes
incompatible.

ANNUAL JOURNAL OF ELECTRONICS, 2009

207

3.3. Compatible patterns merging

In the most of the test patterns, generated during the
previous step there is a lot of ‘x’ values. This is a
preposition for merging the test patterns and reducing the
number of unique test patterns. The power of the test
pattern is increasing. According to the z-set theory if one
test pattern detects two faults, but on different failing
outputs, the two faults are distinguishable. Therefore the
merging can be done between test patterns that are part of d
elements with different FO.

Subalgorithm 4. Test pattern merging. This algorithm
follows the next steps:

1) Make the
},,,,:{ aiaiiiiiia FOFOttFOtfdDdD ==>=<∈∀= .

2) For every ai Dd ∈ and
aj Dd ∈ looking for a

compatible test patterns ii dt ∈ and
jj dt ∈ and replacing

them with resulting test pattern, according to the rules,
described in algorithm 1.

3.4. Getting the minimal test sets

The main aim of this step is to get the minimal diagnosis
test patterns for every fault and to summarize them in the
final test pattern collection Tres.
Subalgorithm 5. This algorithm follows the next steps:

1) For every Ffa ∈ make

},,,:{ aiiiiiia ffFOtfdDdD =>=<∈∀= .
2) For every pair >< ii FOt , in the aD make the

collections a
iF of detecting faults.

3) For every fault make intersection I a
iFK = , until in

K remains only af . Add every a
ii Ft ∈ to the Tres.

4) Minimize the collection Tres by extracting duplicate
test patterns.

IV. CONCLUSION AND FUTURE WORK
In this paper is proposed a deterministic algorithm for

diagnostic test pattern generation with polynomial
complexity. As a result, this algorithm gives a minimal set
of test patterns, which allow to distinguish all the faults in
fault dictionary as single stuck-at faults. This algorithm can
be used for test generation for diagnosis system, based on
cause-effect approach for building fault dictionaries. The
collected information can be used for accelerating the
process of dictionary building. This algorithm can be used
as well as in diagnosis system, based on effect-cause
approach. It gives appropriate circumstances for candidate
faults election and multiple fault analysis.

This algorithm is part of a bigger work that is focused on
masking effect analysis. It is based on single stuck-at fault
model, but it will be expanded to work with multiple-fault
models.

Acknowledgements

This work was supported by the TU-Sofia, project

number № 091ni009-10.

REFERENCES

[1] Bernardi, P.; Grosso, M.; Rebaudengo, M.; Sonza Reorda, M.,
"A pattern ordering algorithm for reducing the size of fault
dictionaries," VLSI Test Symposium, 2006. Proceedings. 24th
IEEE , vol., no., pp.6 pp.-391, April 30 2006-May 4 2006
[2] Pomeranz, I.; Reddy, S.M., "A Same/Different Fault
Dictionary: An Extended Pass/Fail Fault Dictionary with
Improved Diagnostic Resolution," Design, Automation and Test in
Europe, 2008. DATE '08 , vol., no., pp.1474-1479, 10-14 March
2008
[3] Bartenstein, T.; Heaberlin, D.; Huisman, L.; Sliwinski, D.,
"Diagnosing combinational logic designs using the single location
at-a-time (SLAT) paradigm," Test Conference, 2001. Proceedings.
International , vol., no., pp.287-296, 2001
[4] Polian, I.; Miyase, K.; Nakamura, Y.; Kajihara, S.; Engelke, P.;
Becker, B.; Spinner, S.; Xiaoqing Wen; Diagnosis of Realistic
Defects Based on the X-Fault Model, Design and Diagnostics of
Electronic Circuits and Systems, 2008. DDECS 2008. 11th IEEE
Workshop on 16-18 April 2008 Page(s):1 - 4
[5] Takamatsu, Y.; Seiyama, T.; Takahashi, H.; Higami, Y.;
Yamazaki, K., "On the fault diagnosis in the presence of unknown
fault models using pass/fail information," Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on , vol., no.,
pp. 2987-2990 Vol. 3, 23-26 May 2005
[6] Takahashi, H.; Boateng, K.O.; Saluja, K.K.; Takamatsu, Y.,
"On diagnosing multiple stuck-at faults using multiple and single
fault simulation in combinational circuits," Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on ,
vol.21, no.3, pp.362-368, Mar 2002
[7] Rousset, A.; Bosio, A.; Girard, P.; Landrault, C.;
Pravossoudovitch, S.; Virazel, A., "DERRIC: A Tool for Unified
Logic Diagnosis," European Test Symposium, 2007. ETS '07. 12th
IEEE , vol., no., pp.13-20, 20-24 May 2007
[8] Seshadri, B.; Yu, X.; Venkataraman, S.; Accelerating
diagnostic fault simulation using z-diagnosis and concurrent
equivalence identification, VLSI Test Symposium, 2006.
Proceedings. 24th IEEE, April 30 2006-May 4 2006 Page(s):6 pp.
- 385
[9] Liu, J.B.; Veneris, A., "Incremental fault diagnosis,"
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on , vol.24, no.2, pp. 240-251, Feb. 2005
[10] Pomeranz, I..; Reddy, S.M.; Venkataraman, S.., "z-Diagnosis:
A Framework for Diagnostic Fault Simulation and Test
Generation Utilizing Subsets of Outputs," Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on , vol.26,
no.9, pp.1700-1712, Sept. 2007
[11] Seshadri, B.; Yu, X.; Venkataraman, S.; Accelerating
diagnostic fault simulation using z-diagnosis and concurrent
equivalence identification, VLSI Test Symposium, 2006.
Proceedings. 24th IEEE, April 30 2006-May 4 2006 Page(s):6 pp.
- 385
[12] Caruso, A.; Chessa, S.; Maestrini, P.; Santi, P., "Evaluation of
a diagnosis algorithm for regular structures," Computers, IEEE
Transactions on , vol.51, no.7, pp.850-865, Jul 2002
[13] Yung-Chieh Lin; Feng Lu; Kwang-Ting Cheng, "Multiple-
Fault Diagnosis Based On Adaptive Diagnostic Test Pattern
Generation," Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on , vol.26, no.5, pp.932-942, May
2007
[14] Zhiyuan Wang; Marek-Sadowska, M.; Tsai, K.-H.; Rajski, J.,
"Analysis and methodology for multiple-fault diagnosis,"
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on , vol.25, no.3, pp. 558-575, March 2006
[15] ROTH, J. F., Diagnosis of automata failures: A calculus and a
method. ISM J. Res. Deu.,10, 278-281, 1966

